منابع مشابه
A Maximum Variance Cluster Algorithm
We present a partitional cluster algorithm that minimizes the sum-of-squared-error criterion while imposing a hard constraint on the cluster variance. Conceptually, hypothesized clusters act in parallel and cooperate with their neighboring clusters in order to minimize the criterion and to satisfy the variance constraint. In order to enable the demarcation of the cluster neighborhood without cr...
متن کاملIncrementally Assessing Cluster Tendencies with a Maximum Variance Cluster Algorithm
A straightforward and efficient way to discover clustering tendencies in data using a recently proposed Maximum Variance Clustering algorithm is proposed. The approach shares the benefits of the plain clustering algorithm with regard to other approaches for clustering. Experiments using both synthetic and real data have been performed in order to evaluate the differences between the proposed me...
متن کاملColored Maximum Variance Unfolding
Maximum variance unfolding (MVU) is an effective heuristic for dimensionality reduction. It produces a low-dimensional representation of the data by maximizing the variance of their embeddings while preserving the local distances of the original data. We show that MVU also optimizes a statistical dependence measure which aims to retain the identity of individual observations under the distancep...
متن کاملWeighted Maximum Variance Dimensionality Reduction
Dimensionality reduction procedures such as principal component analysis and the maximum margin criterion discriminant are special cases of a weighted maximum variance (WMV) approach. We present a simple two parameter version of WMV that we call 2P-WMV. We study the classification error given by the 1-nearest neighbor algorithm on features extracted by our and other dimensionality reduction met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2002
ISSN: 0162-8828
DOI: 10.1109/tpami.2002.1033218